AROMATIC NUCLEOPHILIC SUBSTITUTION VIII.¹ STOPPED-FLOW KINETICS OF THE TRANSIENT 1,3-DISUBSTITUTED ANIONIC σ COMPLEX IN THE REACTION OF 1-PIPERIDINO-2,4-DINITRONAPHTHALENE WITH POTASSIUM METHOXIDE

S. Sekiguchi,* T. Takei, T. Aizawa, and K. Okada Department of Synthetic Chemistry, Gunma University, Kiryu, Gunma 376, JAPAN (Received in Japan 15 February 1977; received in UK for publication 21 February 1977)

Ever since Servis² first observed by NMR spectrometry that in DMSO much faster formation of 1,3-disubstituted anionic σ complex (hereinafter referred to as 1,3-adduct) from 2,4,6-trinitroanisole (TNA) and $\Theta_{OCH_{\pi}}$ is followed by a much slower attack on the 1-position, considerable attention has been directed toward 1,1-(corresponding to Meisenheimer complex) and 1,3-adducts.³ As for isomeric 1,3-adducts formed in the reaction of aromatic substrates bearing two activating groups with bases, there have so far been few studies. Previous work has been limited to such 1,3-adducts as formed in the reactions of benzene derivatives activated by three electron-attracting groups such as TNA with bases.³ Replacement of a benzene- with a naphthalene-ring, however, could make such 1,3-adducts bearing two activating groups stable enough to be confirmed, which is the case with the 1,3-adduct (II) from 1-piperidino-2,4-dinitronaphthalene (I) and $KOCH_{z}$ in DMSO-CH_zOH (eqn 1).⁴ Fig. 1 shows the spectral change relevant to the interaction of I with KOCH₃ in DMSO-CH₃OH. Curve d is attributable to the 1,3-adduct, which was obtained by plotting the absorbance at infinity at each wavelength by means of a stopped-flow spectrophotometric method (SFSM), and curve c is characteristic of the 1,1-adduct (III).⁴ The first step is the attainment of equilibrium for II with the apparent rate constant k_{μ} , which is measured with a SFSM (eqns 1a and 2). k_1 and k_{-1} , and thus K_1 are determined from a linear plot of k_{μ} against [Θ_{0CH_3}] (eqn 2). The second step is the much slower equilibrium formation of III with the apparent rate constant kobs (eqn 1b). Extrapolation to the intercept should give k-2 (eqn 3 and Fig. 2). Once k_{-2} is obtained, the inversion plot of $1/(k_{obs} - k_{-2})$

from eqn 2. Table 1 shows the difference in K_1 (520±45 and 311±52 at 25°) is a little larger than expected. Although whether the conversion of II to III takes place by the direct route II+III or by the route II+I+III is a question which kinetic measurements can not answer, the direct route might substantially be responsible for it. 3b k₂ are considered to be inaccurate as seen from their experimental errors, because extrapolation to the intercept is arbitrary to some extent (Fig. 2), so the ΔH^{\dagger}_{2} , ΔS^{\dagger}_{2} , ΔH , ΔS , and K_{2} become equivocal to that extent. Trial calculation shows that K_2 is $(3.1\pm2.4)\times10^4$, $(7.7\pm3.8)\times10^3$, and $(4.1\pm0.6)\times10^3$ at 25, 35, and 40°, respectively. Multiple alkoxy-substitution has a large stabilizing effect on a sp³ carbon as well as relative to an equally substituted sp² carbon.^{3a,5} In I, therefore, the piperidyl group at the 1-position in the place of an alkoxyl group is considered to make III less stable than a 1,1-dialkoxy-substituted adduct, which thus rendered the kinetics of both adducts formation possible, together with the replacement of a benzene- with a naphthalene-ring.^{4b} The detailed study is now in progress.

References

1 Part VII, S. Sekiguchi, K. Tsutsumi, H. Shizuka, K. Matsui, and T. Itagaki, Bull. Chem. Soc. Jpn., <u>49</u>, 1521 (1976).

2 K. L. Servis, J. Amer. Chem. Soc., 87, 5495 (1965); ibid., 89, 1508 (1967).

- 3 (a) C. F. Bernasconi, J. Amer. Chem. Soc., <u>92</u>, 4682 (1970); ibid., <u>93</u>, 6975 (1971); (b) F. Millot and F. Terrier, Bull. Soc. Chim. Fr., 1823 (1974) and refer to the references cited theirin; (c) E. J. Fendler, J. H. Fendler, N. L. Arthur, and C. E. Griffin, J. Org. Chem., <u>37</u>, 812 (1972); (d) C. A. Fyde, M. Cociverna, and S. W. H. Damji, J. Amer. Chem. Soc., <u>97</u>, 5707 (1975)
- 4 (a) S. Sekiguchi, K. Shinozaki, T. Hirose, K. Matsui, and T. Itagaki, Tetrahedron Lett., No. 19, 1745 (1974); (b) S. Sekiguchi, S. Fujisawa, and

- Y. Ando, Bull. Chem. Soc. Jpn., 49, 1451 (1976).
- 5 (a) J. Hine, J. Amer. Chem. Soc., <u>85</u>, 3239 (1963); (b) J. Hine, L. G. Mahone, and C. L. Liotta, ibid., <u>89</u>, 5911 (1967).

Fig. 1 Spectral changes relevant to the reaction of 1-piperidino-2,4dinitronaphthalene with KOCH₃ in CH₃OH-DMSO (1:9, v/v); a I (3.5×10^{-5} mol·1⁻¹) before addition of KOCH₃; b and c immediately and 60 min after addition of KOCH₃ (8.2×10^{-3} mol·1⁻¹); d obtained by means of a stoppedflow method (I 7.0×10⁻⁴ mol·1⁻¹); CH₃OK 3.9×10⁻³ mol·1⁻¹).

	NNO2 COCH3 HNO2 HNO2	a II	b NO2 NO2 III
$\frac{1}{k_1(1 \cdot mol^{-1} \cdot sec^{-1})}$) 15° 2.36±0.04×10 ²	$k_2(1 \cdot mo1^{-1} \cdot sec^{-1})$	25° 2.53±0.29
	25° 4.92±0.21×10 ²		35° 5.22±0.57
	35° 9.49±0.49×10 ²		40° 7.27±0.35
$k_{-1}(sec^{-1})$	15° 0.38±0.02	k ₋₂ (sec ⁻¹)	25° 1.8±1.3×10 ⁻⁴
*	25° 0.95±0.04	-	35° 8.5±3.5×10 ⁻⁴
	35° 2.05±0.13		40° 1.8±0.2×10 ⁻³
$K_{1}(1 \cdot mo1^{-1})$	15° 627±38	$K_1 (1 \cdot mo1^{-1})$	25° 311±52
I	25° 520±45	1	35° 241±38
	35° 465±53		40° 239±18
$\Delta H^{\frac{1}{4}}$ (kcal·mol ⁻¹)	c 11.5	$\Delta H^{\frac{1}{4}}_{2} (kcal \cdot mol^{-1})^{c}$	12.2±1.9
$\Delta H^{\frac{1}{4}}_{-1} (kcal \cdot mol^{-1})$) ^c 14.1	$\Delta H^{\frac{1}{4}}_{-2} (kcal \cdot mol^{-1})^{c}$	27.2±13.0
∆S [‡] _(e.u.) ^c	- 7.6	∆s [†] 2(e.u.) ^c	-15.4±6.4
$\Delta H(kcal \cdot mol^{-1})^{c}$	- 2.6	ΔH(kcal·mol ⁻¹) ^C	-15.0
∆S(e.u.) ^C	3.7	∆S(e.u.) ^C	-31.2

Table 1 Kinetic and thermodynamic data on the formation of the 1,3- and 1,1-adducts.

^a Rate constants were calculated from the kinetics of the formation of the 1,3-adduct by means of a SFSM.

^b Rate constants were calculated from the kinetics of the formation of the 1,1-adduct.

^C At 25°.